Vessel Detection Using Satellite SAR Images and AIS Data
نویسندگان
چکیده
منابع مشابه
Vessel Detection and velocity estimation using SAR amplitude images
This paper presents a novel technique to detect ships and estimate their velocities. The technique takes advantage of two existing techniques and inserts some innovation by using the Radon Transform to detect the ship wake and estimate the range velocity component. For detection, cross correlation of split-look is used. To estimate the azimuth velocity component a sequence of single-look SAR im...
متن کاملCorrection: Improving Fishing Pattern Detection from Satellite AIS Using Data Mining and Machine Learning
[This corrects the article DOI: 10.1371/journal.pone.0158248.].
متن کاملImproving Fishing Pattern Detection from Satellite AIS Using Data Mining and Machine Learning
A key challenge in contemporary ecology and conservation is the accurate tracking of the spatial distribution of various human impacts, such as fishing. While coastal fisheries in national waters are closely monitored in some countries, existing maps of fishing effort elsewhere are fraught with uncertainty, especially in remote areas and the High Seas. Better understanding of the behavior of th...
متن کاملDetection of land use and vegetation changes in Poldokhtar Using Landsat Satellite Images
This article has no abstract.
متن کاملUrban Change Detection Using Multitemporal SAR Images
........................................................................................ I SAMMANFATTNING .................................................................... IV ACKNOWLEDGEMENTS ........................................................... VII TABLE OF CONTENTS ................................................................. IX LIST OF FIGURES ......................................
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of the Korean Association of Geographic Information Studies
سال: 2012
ISSN: 1226-9719
DOI: 10.11108/kagis.2012.15.2.103